direct product, metabelian, supersoluble, monomial
Aliases: C2×C33⋊12D4, C62.159D6, (C3×C6)⋊8D12, (C6×C12)⋊12S3, (C3×C12)⋊22D6, C33⋊31(C2×D4), (C32×C6)⋊12D4, C6⋊1(C12⋊S3), C32⋊15(C2×D12), (C32×C12)⋊13C22, (C32×C6).97C23, (C3×C62).68C22, (C3×C6×C12)⋊5C2, C12⋊7(C2×C3⋊S3), (C2×C12)⋊3(C3⋊S3), C3⋊2(C2×C12⋊S3), C4⋊2(C2×C33⋊C2), C6.41(C22×C3⋊S3), (C2×C4)⋊2(C33⋊C2), (C3×C6).186(C22×S3), (C22×C33⋊C2)⋊4C2, C2.4(C22×C33⋊C2), (C2×C33⋊C2)⋊12C22, C22.10(C2×C33⋊C2), (C2×C6).48(C2×C3⋊S3), SmallGroup(432,722)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C32×C6 — C2×C33⋊C2 — C22×C33⋊C2 — C2×C33⋊12D4 |
Generators and relations for C2×C33⋊12D4
G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, cd=dc, ce=ec, fcf=c-1, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 5192 in 756 conjugacy classes, 235 normal (9 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C32, C12, D6, C2×C6, C2×D4, C3⋊S3, C3×C6, D12, C2×C12, C22×S3, C33, C3×C12, C2×C3⋊S3, C62, C2×D12, C33⋊C2, C32×C6, C32×C6, C12⋊S3, C6×C12, C22×C3⋊S3, C32×C12, C2×C33⋊C2, C2×C33⋊C2, C3×C62, C2×C12⋊S3, C33⋊12D4, C3×C6×C12, C22×C33⋊C2, C2×C33⋊12D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, D12, C22×S3, C2×C3⋊S3, C2×D12, C33⋊C2, C12⋊S3, C22×C3⋊S3, C2×C33⋊C2, C2×C12⋊S3, C33⋊12D4, C22×C33⋊C2, C2×C33⋊12D4
(1 148)(2 145)(3 146)(4 147)(5 175)(6 176)(7 173)(8 174)(9 179)(10 180)(11 177)(12 178)(13 183)(14 184)(15 181)(16 182)(17 187)(18 188)(19 185)(20 186)(21 191)(22 192)(23 189)(24 190)(25 166)(26 167)(27 168)(28 165)(29 170)(30 171)(31 172)(32 169)(33 118)(34 119)(35 120)(36 117)(37 122)(38 123)(39 124)(40 121)(41 126)(42 127)(43 128)(44 125)(45 130)(46 131)(47 132)(48 129)(49 134)(50 135)(51 136)(52 133)(53 109)(54 110)(55 111)(56 112)(57 115)(58 116)(59 113)(60 114)(61 196)(62 193)(63 194)(64 195)(65 200)(66 197)(67 198)(68 199)(69 204)(70 201)(71 202)(72 203)(73 208)(74 205)(75 206)(76 207)(77 212)(78 209)(79 210)(80 211)(81 137)(82 138)(83 139)(84 140)(85 144)(86 141)(87 142)(88 143)(89 151)(90 152)(91 149)(92 150)(93 155)(94 156)(95 153)(96 154)(97 159)(98 160)(99 157)(100 158)(101 163)(102 164)(103 161)(104 162)(105 213)(106 214)(107 215)(108 216)
(1 168 74)(2 165 75)(3 166 76)(4 167 73)(5 101 41)(6 102 42)(7 103 43)(8 104 44)(9 137 47)(10 138 48)(11 139 45)(12 140 46)(13 61 49)(14 62 50)(15 63 51)(16 64 52)(17 68 111)(18 65 112)(19 66 109)(20 67 110)(21 70 86)(22 71 87)(23 72 88)(24 69 85)(25 207 146)(26 208 147)(27 205 148)(28 206 145)(29 98 37)(30 99 38)(31 100 39)(32 97 40)(33 106 96)(34 107 93)(35 108 94)(36 105 95)(53 185 197)(54 186 198)(55 187 199)(56 188 200)(57 78 90)(58 79 91)(59 80 92)(60 77 89)(81 132 179)(82 129 180)(83 130 177)(84 131 178)(113 211 150)(114 212 151)(115 209 152)(116 210 149)(117 213 153)(118 214 154)(119 215 155)(120 216 156)(121 169 159)(122 170 160)(123 171 157)(124 172 158)(125 174 162)(126 175 163)(127 176 164)(128 173 161)(133 182 195)(134 183 196)(135 184 193)(136 181 194)(141 191 201)(142 192 202)(143 189 203)(144 190 204)
(1 49 32)(2 50 29)(3 51 30)(4 52 31)(5 80 112)(6 77 109)(7 78 110)(8 79 111)(9 93 22)(10 94 23)(11 95 24)(12 96 21)(13 97 168)(14 98 165)(15 99 166)(16 100 167)(17 104 91)(18 101 92)(19 102 89)(20 103 90)(25 181 157)(26 182 158)(27 183 159)(28 184 160)(33 70 140)(34 71 137)(35 72 138)(36 69 139)(37 75 62)(38 76 63)(39 73 64)(40 74 61)(41 59 65)(42 60 66)(43 57 67)(44 58 68)(45 105 85)(46 106 86)(47 107 87)(48 108 88)(53 176 212)(54 173 209)(55 174 210)(56 175 211)(81 119 202)(82 120 203)(83 117 204)(84 118 201)(113 200 126)(114 197 127)(115 198 128)(116 199 125)(121 205 196)(122 206 193)(123 207 194)(124 208 195)(129 216 143)(130 213 144)(131 214 141)(132 215 142)(133 172 147)(134 169 148)(135 170 145)(136 171 146)(149 187 162)(150 188 163)(151 185 164)(152 186 161)(153 190 177)(154 191 178)(155 192 179)(156 189 180)
(1 22 43)(2 23 44)(3 24 41)(4 21 42)(5 166 69)(6 167 70)(7 168 71)(8 165 72)(9 57 49)(10 58 50)(11 59 51)(12 60 52)(13 137 78)(14 138 79)(15 139 80)(16 140 77)(17 37 108)(18 38 105)(19 39 106)(20 40 107)(25 204 175)(26 201 176)(27 202 173)(28 203 174)(29 94 68)(30 95 65)(31 96 66)(32 93 67)(33 109 100)(34 110 97)(35 111 98)(36 112 99)(45 92 63)(46 89 64)(47 90 61)(48 91 62)(53 158 118)(54 159 119)(55 160 120)(56 157 117)(73 86 102)(74 87 103)(75 88 104)(76 85 101)(81 209 183)(82 210 184)(83 211 181)(84 212 182)(113 136 177)(114 133 178)(115 134 179)(116 135 180)(121 215 186)(122 216 187)(123 213 188)(124 214 185)(125 145 189)(126 146 190)(127 147 191)(128 148 192)(129 149 193)(130 150 194)(131 151 195)(132 152 196)(141 164 208)(142 161 205)(143 162 206)(144 163 207)(153 200 171)(154 197 172)(155 198 169)(156 199 170)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)(193 194 195 196)(197 198 199 200)(201 202 203 204)(205 206 207 208)(209 210 211 212)(213 214 215 216)
(1 146)(2 145)(3 148)(4 147)(5 142)(6 141)(7 144)(8 143)(9 200)(10 199)(11 198)(12 197)(13 123)(14 122)(15 121)(16 124)(17 82)(18 81)(19 84)(20 83)(21 127)(22 126)(23 125)(24 128)(25 74)(26 73)(27 76)(28 75)(29 135)(30 134)(31 133)(32 136)(33 151)(34 150)(35 149)(36 152)(37 184)(38 183)(39 182)(40 181)(41 192)(42 191)(43 190)(44 189)(45 54)(46 53)(47 56)(48 55)(49 171)(50 170)(51 169)(52 172)(57 153)(58 156)(59 155)(60 154)(61 157)(62 160)(63 159)(64 158)(65 179)(66 178)(67 177)(68 180)(69 161)(70 164)(71 163)(72 162)(77 214)(78 213)(79 216)(80 215)(85 173)(86 176)(87 175)(88 174)(89 118)(90 117)(91 120)(92 119)(93 113)(94 116)(95 115)(96 114)(97 194)(98 193)(99 196)(100 195)(101 202)(102 201)(103 204)(104 203)(105 209)(106 212)(107 211)(108 210)(109 131)(110 130)(111 129)(112 132)(137 188)(138 187)(139 186)(140 185)(165 206)(166 205)(167 208)(168 207)
G:=sub<Sym(216)| (1,148)(2,145)(3,146)(4,147)(5,175)(6,176)(7,173)(8,174)(9,179)(10,180)(11,177)(12,178)(13,183)(14,184)(15,181)(16,182)(17,187)(18,188)(19,185)(20,186)(21,191)(22,192)(23,189)(24,190)(25,166)(26,167)(27,168)(28,165)(29,170)(30,171)(31,172)(32,169)(33,118)(34,119)(35,120)(36,117)(37,122)(38,123)(39,124)(40,121)(41,126)(42,127)(43,128)(44,125)(45,130)(46,131)(47,132)(48,129)(49,134)(50,135)(51,136)(52,133)(53,109)(54,110)(55,111)(56,112)(57,115)(58,116)(59,113)(60,114)(61,196)(62,193)(63,194)(64,195)(65,200)(66,197)(67,198)(68,199)(69,204)(70,201)(71,202)(72,203)(73,208)(74,205)(75,206)(76,207)(77,212)(78,209)(79,210)(80,211)(81,137)(82,138)(83,139)(84,140)(85,144)(86,141)(87,142)(88,143)(89,151)(90,152)(91,149)(92,150)(93,155)(94,156)(95,153)(96,154)(97,159)(98,160)(99,157)(100,158)(101,163)(102,164)(103,161)(104,162)(105,213)(106,214)(107,215)(108,216), (1,168,74)(2,165,75)(3,166,76)(4,167,73)(5,101,41)(6,102,42)(7,103,43)(8,104,44)(9,137,47)(10,138,48)(11,139,45)(12,140,46)(13,61,49)(14,62,50)(15,63,51)(16,64,52)(17,68,111)(18,65,112)(19,66,109)(20,67,110)(21,70,86)(22,71,87)(23,72,88)(24,69,85)(25,207,146)(26,208,147)(27,205,148)(28,206,145)(29,98,37)(30,99,38)(31,100,39)(32,97,40)(33,106,96)(34,107,93)(35,108,94)(36,105,95)(53,185,197)(54,186,198)(55,187,199)(56,188,200)(57,78,90)(58,79,91)(59,80,92)(60,77,89)(81,132,179)(82,129,180)(83,130,177)(84,131,178)(113,211,150)(114,212,151)(115,209,152)(116,210,149)(117,213,153)(118,214,154)(119,215,155)(120,216,156)(121,169,159)(122,170,160)(123,171,157)(124,172,158)(125,174,162)(126,175,163)(127,176,164)(128,173,161)(133,182,195)(134,183,196)(135,184,193)(136,181,194)(141,191,201)(142,192,202)(143,189,203)(144,190,204), (1,49,32)(2,50,29)(3,51,30)(4,52,31)(5,80,112)(6,77,109)(7,78,110)(8,79,111)(9,93,22)(10,94,23)(11,95,24)(12,96,21)(13,97,168)(14,98,165)(15,99,166)(16,100,167)(17,104,91)(18,101,92)(19,102,89)(20,103,90)(25,181,157)(26,182,158)(27,183,159)(28,184,160)(33,70,140)(34,71,137)(35,72,138)(36,69,139)(37,75,62)(38,76,63)(39,73,64)(40,74,61)(41,59,65)(42,60,66)(43,57,67)(44,58,68)(45,105,85)(46,106,86)(47,107,87)(48,108,88)(53,176,212)(54,173,209)(55,174,210)(56,175,211)(81,119,202)(82,120,203)(83,117,204)(84,118,201)(113,200,126)(114,197,127)(115,198,128)(116,199,125)(121,205,196)(122,206,193)(123,207,194)(124,208,195)(129,216,143)(130,213,144)(131,214,141)(132,215,142)(133,172,147)(134,169,148)(135,170,145)(136,171,146)(149,187,162)(150,188,163)(151,185,164)(152,186,161)(153,190,177)(154,191,178)(155,192,179)(156,189,180), (1,22,43)(2,23,44)(3,24,41)(4,21,42)(5,166,69)(6,167,70)(7,168,71)(8,165,72)(9,57,49)(10,58,50)(11,59,51)(12,60,52)(13,137,78)(14,138,79)(15,139,80)(16,140,77)(17,37,108)(18,38,105)(19,39,106)(20,40,107)(25,204,175)(26,201,176)(27,202,173)(28,203,174)(29,94,68)(30,95,65)(31,96,66)(32,93,67)(33,109,100)(34,110,97)(35,111,98)(36,112,99)(45,92,63)(46,89,64)(47,90,61)(48,91,62)(53,158,118)(54,159,119)(55,160,120)(56,157,117)(73,86,102)(74,87,103)(75,88,104)(76,85,101)(81,209,183)(82,210,184)(83,211,181)(84,212,182)(113,136,177)(114,133,178)(115,134,179)(116,135,180)(121,215,186)(122,216,187)(123,213,188)(124,214,185)(125,145,189)(126,146,190)(127,147,191)(128,148,192)(129,149,193)(130,150,194)(131,151,195)(132,152,196)(141,164,208)(142,161,205)(143,162,206)(144,163,207)(153,200,171)(154,197,172)(155,198,169)(156,199,170), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216), (1,146)(2,145)(3,148)(4,147)(5,142)(6,141)(7,144)(8,143)(9,200)(10,199)(11,198)(12,197)(13,123)(14,122)(15,121)(16,124)(17,82)(18,81)(19,84)(20,83)(21,127)(22,126)(23,125)(24,128)(25,74)(26,73)(27,76)(28,75)(29,135)(30,134)(31,133)(32,136)(33,151)(34,150)(35,149)(36,152)(37,184)(38,183)(39,182)(40,181)(41,192)(42,191)(43,190)(44,189)(45,54)(46,53)(47,56)(48,55)(49,171)(50,170)(51,169)(52,172)(57,153)(58,156)(59,155)(60,154)(61,157)(62,160)(63,159)(64,158)(65,179)(66,178)(67,177)(68,180)(69,161)(70,164)(71,163)(72,162)(77,214)(78,213)(79,216)(80,215)(85,173)(86,176)(87,175)(88,174)(89,118)(90,117)(91,120)(92,119)(93,113)(94,116)(95,115)(96,114)(97,194)(98,193)(99,196)(100,195)(101,202)(102,201)(103,204)(104,203)(105,209)(106,212)(107,211)(108,210)(109,131)(110,130)(111,129)(112,132)(137,188)(138,187)(139,186)(140,185)(165,206)(166,205)(167,208)(168,207)>;
G:=Group( (1,148)(2,145)(3,146)(4,147)(5,175)(6,176)(7,173)(8,174)(9,179)(10,180)(11,177)(12,178)(13,183)(14,184)(15,181)(16,182)(17,187)(18,188)(19,185)(20,186)(21,191)(22,192)(23,189)(24,190)(25,166)(26,167)(27,168)(28,165)(29,170)(30,171)(31,172)(32,169)(33,118)(34,119)(35,120)(36,117)(37,122)(38,123)(39,124)(40,121)(41,126)(42,127)(43,128)(44,125)(45,130)(46,131)(47,132)(48,129)(49,134)(50,135)(51,136)(52,133)(53,109)(54,110)(55,111)(56,112)(57,115)(58,116)(59,113)(60,114)(61,196)(62,193)(63,194)(64,195)(65,200)(66,197)(67,198)(68,199)(69,204)(70,201)(71,202)(72,203)(73,208)(74,205)(75,206)(76,207)(77,212)(78,209)(79,210)(80,211)(81,137)(82,138)(83,139)(84,140)(85,144)(86,141)(87,142)(88,143)(89,151)(90,152)(91,149)(92,150)(93,155)(94,156)(95,153)(96,154)(97,159)(98,160)(99,157)(100,158)(101,163)(102,164)(103,161)(104,162)(105,213)(106,214)(107,215)(108,216), (1,168,74)(2,165,75)(3,166,76)(4,167,73)(5,101,41)(6,102,42)(7,103,43)(8,104,44)(9,137,47)(10,138,48)(11,139,45)(12,140,46)(13,61,49)(14,62,50)(15,63,51)(16,64,52)(17,68,111)(18,65,112)(19,66,109)(20,67,110)(21,70,86)(22,71,87)(23,72,88)(24,69,85)(25,207,146)(26,208,147)(27,205,148)(28,206,145)(29,98,37)(30,99,38)(31,100,39)(32,97,40)(33,106,96)(34,107,93)(35,108,94)(36,105,95)(53,185,197)(54,186,198)(55,187,199)(56,188,200)(57,78,90)(58,79,91)(59,80,92)(60,77,89)(81,132,179)(82,129,180)(83,130,177)(84,131,178)(113,211,150)(114,212,151)(115,209,152)(116,210,149)(117,213,153)(118,214,154)(119,215,155)(120,216,156)(121,169,159)(122,170,160)(123,171,157)(124,172,158)(125,174,162)(126,175,163)(127,176,164)(128,173,161)(133,182,195)(134,183,196)(135,184,193)(136,181,194)(141,191,201)(142,192,202)(143,189,203)(144,190,204), (1,49,32)(2,50,29)(3,51,30)(4,52,31)(5,80,112)(6,77,109)(7,78,110)(8,79,111)(9,93,22)(10,94,23)(11,95,24)(12,96,21)(13,97,168)(14,98,165)(15,99,166)(16,100,167)(17,104,91)(18,101,92)(19,102,89)(20,103,90)(25,181,157)(26,182,158)(27,183,159)(28,184,160)(33,70,140)(34,71,137)(35,72,138)(36,69,139)(37,75,62)(38,76,63)(39,73,64)(40,74,61)(41,59,65)(42,60,66)(43,57,67)(44,58,68)(45,105,85)(46,106,86)(47,107,87)(48,108,88)(53,176,212)(54,173,209)(55,174,210)(56,175,211)(81,119,202)(82,120,203)(83,117,204)(84,118,201)(113,200,126)(114,197,127)(115,198,128)(116,199,125)(121,205,196)(122,206,193)(123,207,194)(124,208,195)(129,216,143)(130,213,144)(131,214,141)(132,215,142)(133,172,147)(134,169,148)(135,170,145)(136,171,146)(149,187,162)(150,188,163)(151,185,164)(152,186,161)(153,190,177)(154,191,178)(155,192,179)(156,189,180), (1,22,43)(2,23,44)(3,24,41)(4,21,42)(5,166,69)(6,167,70)(7,168,71)(8,165,72)(9,57,49)(10,58,50)(11,59,51)(12,60,52)(13,137,78)(14,138,79)(15,139,80)(16,140,77)(17,37,108)(18,38,105)(19,39,106)(20,40,107)(25,204,175)(26,201,176)(27,202,173)(28,203,174)(29,94,68)(30,95,65)(31,96,66)(32,93,67)(33,109,100)(34,110,97)(35,111,98)(36,112,99)(45,92,63)(46,89,64)(47,90,61)(48,91,62)(53,158,118)(54,159,119)(55,160,120)(56,157,117)(73,86,102)(74,87,103)(75,88,104)(76,85,101)(81,209,183)(82,210,184)(83,211,181)(84,212,182)(113,136,177)(114,133,178)(115,134,179)(116,135,180)(121,215,186)(122,216,187)(123,213,188)(124,214,185)(125,145,189)(126,146,190)(127,147,191)(128,148,192)(129,149,193)(130,150,194)(131,151,195)(132,152,196)(141,164,208)(142,161,205)(143,162,206)(144,163,207)(153,200,171)(154,197,172)(155,198,169)(156,199,170), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216), (1,146)(2,145)(3,148)(4,147)(5,142)(6,141)(7,144)(8,143)(9,200)(10,199)(11,198)(12,197)(13,123)(14,122)(15,121)(16,124)(17,82)(18,81)(19,84)(20,83)(21,127)(22,126)(23,125)(24,128)(25,74)(26,73)(27,76)(28,75)(29,135)(30,134)(31,133)(32,136)(33,151)(34,150)(35,149)(36,152)(37,184)(38,183)(39,182)(40,181)(41,192)(42,191)(43,190)(44,189)(45,54)(46,53)(47,56)(48,55)(49,171)(50,170)(51,169)(52,172)(57,153)(58,156)(59,155)(60,154)(61,157)(62,160)(63,159)(64,158)(65,179)(66,178)(67,177)(68,180)(69,161)(70,164)(71,163)(72,162)(77,214)(78,213)(79,216)(80,215)(85,173)(86,176)(87,175)(88,174)(89,118)(90,117)(91,120)(92,119)(93,113)(94,116)(95,115)(96,114)(97,194)(98,193)(99,196)(100,195)(101,202)(102,201)(103,204)(104,203)(105,209)(106,212)(107,211)(108,210)(109,131)(110,130)(111,129)(112,132)(137,188)(138,187)(139,186)(140,185)(165,206)(166,205)(167,208)(168,207) );
G=PermutationGroup([[(1,148),(2,145),(3,146),(4,147),(5,175),(6,176),(7,173),(8,174),(9,179),(10,180),(11,177),(12,178),(13,183),(14,184),(15,181),(16,182),(17,187),(18,188),(19,185),(20,186),(21,191),(22,192),(23,189),(24,190),(25,166),(26,167),(27,168),(28,165),(29,170),(30,171),(31,172),(32,169),(33,118),(34,119),(35,120),(36,117),(37,122),(38,123),(39,124),(40,121),(41,126),(42,127),(43,128),(44,125),(45,130),(46,131),(47,132),(48,129),(49,134),(50,135),(51,136),(52,133),(53,109),(54,110),(55,111),(56,112),(57,115),(58,116),(59,113),(60,114),(61,196),(62,193),(63,194),(64,195),(65,200),(66,197),(67,198),(68,199),(69,204),(70,201),(71,202),(72,203),(73,208),(74,205),(75,206),(76,207),(77,212),(78,209),(79,210),(80,211),(81,137),(82,138),(83,139),(84,140),(85,144),(86,141),(87,142),(88,143),(89,151),(90,152),(91,149),(92,150),(93,155),(94,156),(95,153),(96,154),(97,159),(98,160),(99,157),(100,158),(101,163),(102,164),(103,161),(104,162),(105,213),(106,214),(107,215),(108,216)], [(1,168,74),(2,165,75),(3,166,76),(4,167,73),(5,101,41),(6,102,42),(7,103,43),(8,104,44),(9,137,47),(10,138,48),(11,139,45),(12,140,46),(13,61,49),(14,62,50),(15,63,51),(16,64,52),(17,68,111),(18,65,112),(19,66,109),(20,67,110),(21,70,86),(22,71,87),(23,72,88),(24,69,85),(25,207,146),(26,208,147),(27,205,148),(28,206,145),(29,98,37),(30,99,38),(31,100,39),(32,97,40),(33,106,96),(34,107,93),(35,108,94),(36,105,95),(53,185,197),(54,186,198),(55,187,199),(56,188,200),(57,78,90),(58,79,91),(59,80,92),(60,77,89),(81,132,179),(82,129,180),(83,130,177),(84,131,178),(113,211,150),(114,212,151),(115,209,152),(116,210,149),(117,213,153),(118,214,154),(119,215,155),(120,216,156),(121,169,159),(122,170,160),(123,171,157),(124,172,158),(125,174,162),(126,175,163),(127,176,164),(128,173,161),(133,182,195),(134,183,196),(135,184,193),(136,181,194),(141,191,201),(142,192,202),(143,189,203),(144,190,204)], [(1,49,32),(2,50,29),(3,51,30),(4,52,31),(5,80,112),(6,77,109),(7,78,110),(8,79,111),(9,93,22),(10,94,23),(11,95,24),(12,96,21),(13,97,168),(14,98,165),(15,99,166),(16,100,167),(17,104,91),(18,101,92),(19,102,89),(20,103,90),(25,181,157),(26,182,158),(27,183,159),(28,184,160),(33,70,140),(34,71,137),(35,72,138),(36,69,139),(37,75,62),(38,76,63),(39,73,64),(40,74,61),(41,59,65),(42,60,66),(43,57,67),(44,58,68),(45,105,85),(46,106,86),(47,107,87),(48,108,88),(53,176,212),(54,173,209),(55,174,210),(56,175,211),(81,119,202),(82,120,203),(83,117,204),(84,118,201),(113,200,126),(114,197,127),(115,198,128),(116,199,125),(121,205,196),(122,206,193),(123,207,194),(124,208,195),(129,216,143),(130,213,144),(131,214,141),(132,215,142),(133,172,147),(134,169,148),(135,170,145),(136,171,146),(149,187,162),(150,188,163),(151,185,164),(152,186,161),(153,190,177),(154,191,178),(155,192,179),(156,189,180)], [(1,22,43),(2,23,44),(3,24,41),(4,21,42),(5,166,69),(6,167,70),(7,168,71),(8,165,72),(9,57,49),(10,58,50),(11,59,51),(12,60,52),(13,137,78),(14,138,79),(15,139,80),(16,140,77),(17,37,108),(18,38,105),(19,39,106),(20,40,107),(25,204,175),(26,201,176),(27,202,173),(28,203,174),(29,94,68),(30,95,65),(31,96,66),(32,93,67),(33,109,100),(34,110,97),(35,111,98),(36,112,99),(45,92,63),(46,89,64),(47,90,61),(48,91,62),(53,158,118),(54,159,119),(55,160,120),(56,157,117),(73,86,102),(74,87,103),(75,88,104),(76,85,101),(81,209,183),(82,210,184),(83,211,181),(84,212,182),(113,136,177),(114,133,178),(115,134,179),(116,135,180),(121,215,186),(122,216,187),(123,213,188),(124,214,185),(125,145,189),(126,146,190),(127,147,191),(128,148,192),(129,149,193),(130,150,194),(131,151,195),(132,152,196),(141,164,208),(142,161,205),(143,162,206),(144,163,207),(153,200,171),(154,197,172),(155,198,169),(156,199,170)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192),(193,194,195,196),(197,198,199,200),(201,202,203,204),(205,206,207,208),(209,210,211,212),(213,214,215,216)], [(1,146),(2,145),(3,148),(4,147),(5,142),(6,141),(7,144),(8,143),(9,200),(10,199),(11,198),(12,197),(13,123),(14,122),(15,121),(16,124),(17,82),(18,81),(19,84),(20,83),(21,127),(22,126),(23,125),(24,128),(25,74),(26,73),(27,76),(28,75),(29,135),(30,134),(31,133),(32,136),(33,151),(34,150),(35,149),(36,152),(37,184),(38,183),(39,182),(40,181),(41,192),(42,191),(43,190),(44,189),(45,54),(46,53),(47,56),(48,55),(49,171),(50,170),(51,169),(52,172),(57,153),(58,156),(59,155),(60,154),(61,157),(62,160),(63,159),(64,158),(65,179),(66,178),(67,177),(68,180),(69,161),(70,164),(71,163),(72,162),(77,214),(78,213),(79,216),(80,215),(85,173),(86,176),(87,175),(88,174),(89,118),(90,117),(91,120),(92,119),(93,113),(94,116),(95,115),(96,114),(97,194),(98,193),(99,196),(100,195),(101,202),(102,201),(103,204),(104,203),(105,209),(106,212),(107,211),(108,210),(109,131),(110,130),(111,129),(112,132),(137,188),(138,187),(139,186),(140,185),(165,206),(166,205),(167,208),(168,207)]])
114 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | ··· | 3M | 4A | 4B | 6A | ··· | 6AM | 12A | ··· | 12AZ |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 54 | 54 | 54 | 54 | 2 | ··· | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
114 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D12 |
kernel | C2×C33⋊12D4 | C33⋊12D4 | C3×C6×C12 | C22×C33⋊C2 | C6×C12 | C32×C6 | C3×C12 | C62 | C3×C6 |
# reps | 1 | 4 | 1 | 2 | 13 | 2 | 26 | 13 | 52 |
Matrix representation of C2×C33⋊12D4 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 6 | 0 | 0 | 0 | 0 |
7 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 7 | 0 | 0 |
0 | 0 | 6 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,7,0,0,0,0,6,10,0,0,0,0,0,0,10,6,0,0,0,0,7,3,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0] >;
C2×C33⋊12D4 in GAP, Magma, Sage, TeX
C_2\times C_3^3\rtimes_{12}D_4
% in TeX
G:=Group("C2xC3^3:12D4");
// GroupNames label
G:=SmallGroup(432,722);
// by ID
G=gap.SmallGroup(432,722);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,254,58,1124,4037,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations